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Why Dileptons...?

Dileptons represent a clean and penetrating probe of hot and
dense nuclear matter

Reflect the whole dynamics of a collision

Once produced they do not interact with the surrounding
matter (no strong interactions)

Aim of studies
In-medium modification of vector meson properties
Chiral symmetry restoration
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Ultra-relativistic Quantum Molecular Dynamics

Hadronic non-equilibrium transport
approach

Includes all baryons and mesons with
masses up to 2.2 GeV

Two processes for resonance
production in UrQMD (at low
energies)

Collisions (e.g. ππ → ρ)
Higher resonance decays (e.g.
N∗ → N + ρ)

Resonances either decay after a certain
time or are absorbed in another
collision (e.g. ρ+ N → N∗1520)

No explicit in-medium
modifications!
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Dilepton sources in UrQMD

Dalitz Decays
⇒ π0, η, η′, ω,∆
P → γ + e+e−

V → P +e+e−

Direct Decays
⇒ ρ0, ω, φ

Dalitz decays are decomposed into the corresponding decays
into a virtual photon and the subsequent decay of the photon
via electromagnetic conversion.

Form factors for the Dalitz decays are obtained from the
vector-meson dominance model (VMD).

Assumption: Resonance can continuously emit dileptons over
its whole lifetime (Time Integration Method / “Shining”)

5 / 16



Introduction Transport Calculations Coarse Graining Outlook

∆(1232) Resonance in UrQMD

In UrQMD mass dependent widths
are used, but the lifetime is mass-
independent τ=1/Γ(mpole) to avoid
unphysically high lifetimes for low
masses

Now: We use mass-dependent
(partial) width:

Γi,j(M) = Γi,j
pole

Mpole

M

⇒ Still differences between transport models (parametrizations,
cross-sections, form factors)

⇒ Pion beam might help to finally fix the Delta issue!
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pt Spectra for p + p @ 3.5 GeV
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Transverse momentum spectra at 3.5 GeV are described well
with the mass-dependent ∆
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Room for improvements...

We see an excess in heavy-ion collisions (e.g. Ar+KCl @ 1.76
AGeV) not yet described by the model

Recent HADES measurements indicate that our ρ0 cross-
section is to high at the threshold
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Challenges

Cross-section not implemented explicitly but intermediate
baryonic resonances are used

Some cross-sections are even unmeasured or unmeasurable
(especially for ρ and ∆ lack of data)

General difficulties of the transport approach at high density:

Off-shell effects
Multi-particle collisions

⇒ How can we avoid these problems?
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Coarse Graining

We take an ensemble of UrQMD events and span a grid of
small space time cells for which T and µB are calculated
Equation of state for a free hadron gas without any phase
transition is used [D. Zschiesche et al., Phys. Lett. B547, 7 (2002)]

The ρ dilepton emission of each cell is calculated using the
thermal equilibrium rate [R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

d8Nρ→ll

d4xd4q
= −

α2m4
ρ

π3g2ρ

L(M2)

M2
fB(q0; T)ImDρ(M, q; T, µB)

In-medium self energies of the ρ (for
ImDρ) were calculated using empirical
scattering amplitudes from resonance
dominance
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]
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Densities, Temperature and Chemical Potential
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For a central cell in an Au+Au collision @ 3.5 AGeV we get
up to 15 times ε0 and 10 times ρ0

Temperature T ≈ 140 MeV and baryon chemical potential
µB ≈ 800 MeV
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Au+Au @ 3.5 AGeV

The UrQMD ρ contri-
bution as well as the
coarse-graining results
for the vacuum and
in-medium spectral
functions are shown

In-medium ρ “melts”
away at the pole mass
while it becomes
dominant at lower
masses
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Ar + KCl @ 1.76 AGeV
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Comparison to existing HADES data shows that the
in-medium ρ helps to describe the invariant mass spectra for
heavy-ion reactions
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First look at NA60
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Chiral EoS is used for
the NA60 calculation
(including chiral
symmetry restoration and
phase transition)
[J. Steinheimer et al., J. Phys. G38 (2011)]

In-medium ρ contribution
to dimuon excess

4π and QGP contribution
have to be added

⇒ Currently used Eletsky spectral function can not describe the
low-mass tail excess dimuons → Check different EoS and
spectral functions in the next step
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Outlook

Careful adjustment of dilepton production in UrQMD,
especially via the ρ channel

Coarse-graining to be done higher energies, with all
contributions, and compared to NA60, CERES, RHIC data

[Rapp, Hees] [CERES Collab.] [STAR Collab.]

Investigation of diffent equations of state

Further dilepton calculations with hybrid model (transport +
hydro)

Waiting for HADES Au+Au data and for the pion beam!
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Summary

New approach to combine realistic transport caluclations with
in-medium modified spectral functions for vector mesons

Non-equilibrium treatment highly non-trivial ⇒ Use
equilibrium rates for a coarse-grained transport dynamics

First calculations for Ar+KCl @ 1.76 GeV show that we get a
good description of the invariant mass spectrum

Further work in progress...!
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