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Introduction

Why Dileptons...?

@ Dileptons represent a clean and penetrating probe of hot and
dense nuclear matter

@ Reflect the whole dynamics of a collision

@ Once produced they do not interact with the surrounding
matter (no strong interactions)

@ Aim of studies

e In-medium modification of vector meson properties
o Chiral symmetry restoration
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Transport Calculations

Ultra-relativistic Quantum Molecular Dynamics

@ Hadronic non-equilibrium transport e e width
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. Niso 1515 120

@ Includes all baryons and mesons with Nips 1550 140
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masses up to 2.2 GeV Niow 1675 140
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@ Two processes for resonance Nig 1730150
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o Higher resonance decays (e.g. Nipo 2220 550
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@ No explicit in-medium Algy 190 350
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modifications!

4/16



Transport Calculations

Dilepton sources in UrQMD
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@ Dalitz decays are decomposed into the corresponding decays
into a virtual photon and the subsequent decay of the photon
via electromagnetic conversion.

@ Form factors for the Dalitz decays are obtained from the
vector-meson dominance model (VMD).

@ Assumption: Resonance can continuously emit dileptons over
its whole lifetime (Time Integration Method / “Shining”)
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Transport Calculations

A(1232) Resonance in UrQMD

A lifetimes @ In UrQMD mass dependent widths

T ot are used, but the lifetime is mass-
independent 7=1/T(mpoye) to avoid
unphysically high lifetimes for low
masses

@ Now: We use mass-dependent
(partial) width:
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= Still differences between transport models (parametrizations,

cross-sections, form factors)

= Pion beam might help to finally fix the Delta issue!
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Transport Calculations

p: Spectra for p + p @ 3.5 GeV
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@ Transverse momentum spectra at 3.5 GeV are described well
with the mass-dependent A
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Transport Calculations

Room for improvements...

@ We see an excess in heavy-ion collisions (e.g. Ar+KCl @ 1.76
AGeV) not yet described by the model

e Recent HADES measurements indicate that our p° cross-
section is to high at the threshold
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Transport Calculations

Challenges

@ Cross-section not implemented explicitly but intermediate
baryonic resonances are used

@ Some cross-sections are even unmeasured or unmeasurable
(especially for p and A lack of data)
o General difficulties of the transport approach at high density:

o Off-shell effects
o Multi-particle collisions

= How can we avoid these problems?
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Coarse Graining

Coarse Graining

@ We take an ensemble of UrQMD events and span a grid of
small space time cells for which T and ug are calculated

@ Equation of state for a free hadron gas without any phase
transition is used [D. Zschiesche et al., Phys. Lett. B547, 7 (2002)]

@ The p dilepton emission of each cell is calculated using the
thermal equilibrium rate [r. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]
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‘;“"4 i scattering amplitudes from resonance
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0 [V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]
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Coarse Graining

Densities, Temperature and Chemical Potential
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@ For a central cell in an Au+Au collision @ 3.5 AGeV we get
up to 15 times €y and 10 times pg

@ Temperature T ~ 140 MeV and baryon chemical potential
up ~ 800 MeV
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Au+-Au @ 3.5 AGeV

Coarse Graining

@ The UrQMD p contri-
bution as well as the
coarse-graining results
for the vacuum and
in-medium spectral
functions are shown

@ In-medium p “melts”
away at the pole mass
while it becomes
dominant at lower
masses
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Coarse Graining

Ar + KCl @ 1.76 AGeV
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@ Comparison to existing HADES data shows that the
in-medium p helps to describe the invariant mass spectra for
heavy-ion reactions
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Coarse Graining

First look at NA60

n+in @ ?8 AGeY @ Chiral EoS is used for
<Nff=izh b, >0 GeY the NA6O calculation
(including chiral
symmetry restoration and
phase transition)
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[J. Steinheimer et al., J. Phys. G38 (2011)]
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@ In-medium p contribution
to dimuon excess

@ 47 and QGP contribution
107 S B T A have to be added

= Currently used Eletsky spectral function can not describe the
low-mass tail excess dimuons — Check different EoS and
spectral functions in the next step



Outlook

Outlook

@ Careful adjustment of dilepton production in UrQMD,
especially via the p channel

@ Coarse-graining to be done higher energies, with all
contributions, and compared to NA60, CERES, RHIC data
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[Rapp, Hees] [CERES Collab.] [STAR Collab.]

@ Investigation of diffent equations of state

e Further dilepton calculations with hybrid model (transport +
hydro)

e Waiting for HADES Au+Au data and for the pion beam!
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Outlook

Summary

@ New approach to combine realistic transport caluclations with
in-medium modified spectral functions for vector mesons

@ Non-equilibrium treatment highly non-trivial = Use
equilibrium rates for a coarse-grained transport dynamics

@ First calculations for Ar+KCl @ 1.76 GeV show that we get a
good description of the invariant mass spectrum

@ Further work in progress...!
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