Studies of Dilepton Production with UrQMD Transport Calculations vs. Coarse-grained Dynamics

Stephan Endres (in collab. with M. Bleicher, H. van Hees, J. Weil)

Frankfurt Institute for Advanced Studies ITP Uni Frankfurt

CPOD 2013 - Napa, CA - March 13th, 2013

Overview

- Introduction
- 2 Transport Calculations
- Coarse Graining
- 4 Outlook

Why Dileptons...?

 Dileptons represent a clean and penetrating probe of hot and dense nuclear matter

- Reflect the whole dynamics of a collision
- Once produced they do not interact with the surrounding matter (no strong interactions)
- Aim of studies
 - In-medium modification of vector meson properties
 - Chiral symmetry restoration

Outlook

Ultra-relativistic Quantum Molecular Dynamics

- Hadronic non-equilibrium transport approach
- Includes all baryons and mesons with masses up to 2.2 GeV
- Two processes for resonance production in UrQMD (at low energies)
 - Collisions (e.g. $\pi\pi \to \rho$)
 - Higher resonance decays (e.g. $N^* \rightarrow N + \rho$
- Resonances either decay after a certain time or are absorbed in another collision (e.g. $\rho + N \rightarrow N_{1520}^*$)
- No explicit in-medium modifications!

Resonance	Mass	Width
N_{1440}^*	1.440	350
N_{1520}^{*}	1.515	120
N_{1535}^*	1.550	140
N_{1650}^{*}	1.645	160
N* 1675	1.675	140
N_{1680}^{*}	1.680	140
N_{1700}^{*}	1.730	150
N_{1710}^{*}	1.710	500
N_{1720}^*	1.720	550
N_{1900}^*	1.850	350
N_{1990}^*	1.950	500
N_{2080}^*	2.000	550
N_{2190}^{*}	2.150	470
N_{2220}^*	2.220	550
N_{2250}^*	2.250	470
Δ_{1232}	1.232	115
Δ_{1600}^{*}	1.700	350
Δ_{1620}^{*}	1.675	160
Δ^*_{1700}	1.750	350
Δ_{1900}^{*}	1.840	260
Δ_{1905}^{*}	1.880	350
Δ_{1910}^{*}	1.900	250
Δ_{1920}^{*}	1.920	200
Δ_{1930}^{*}	1.970	350
Δ_{1950}^{*}	1.990	350

Dilepton sources in UrQMD

- Dalitz Decays $\Rightarrow \pi^0, \eta, \eta', \omega, \Delta$ $P \rightarrow \gamma + e^+e^ V \rightarrow P + e^+e^-$
- Direct Decays $\Rightarrow \rho^0, \omega, \phi$

- Dalitz decays are decomposed into the corresponding decays into a virtual photon and the subsequent decay of the photon via electromagnetic conversion.
- Form factors for the Dalitz decays are obtained from the **vector-meson dominance** model (VMD).
- Assumption: Resonance can continuously emit dileptons over its whole lifetime (Time Integration Method / "Shining")

Outlook

$\Delta(1232)$ Resonance in UrQMD

- In UrQMD mass dependent widths are used, but the lifetime is massindependent $\tau=1/\Gamma(m_{pole})$ to avoid unphysically high lifetimes for low masses
- Now: We use mass-dependent (partial) width:

$$\Gamma_{i,j}(M) = \Gamma_{pole}^{i,j} \frac{M_{pole}}{M}$$

- ⇒ Still differences between transport models (parametrizations, cross-sections, form factors)
- ⇒ Pion beam might help to finally fix the Delta issue!

p_t Spectra for p + p @ 3.5 GeV

 \bullet Transverse momentum spectra at 3.5 GeV are described well with the mass-dependent Δ

Room for improvements...

- We see an excess in heavy-ion collisions (e.g. Ar+KCl @ 1.76 AGeV) not yet described by the model
- \bullet Recent HADES measurements indicate that our ρ^0 cross-section is to high at the threshold

Challenges

- Cross-section not implemented explicitly but intermediate baryonic resonances are used
- Some cross-sections are even unmeasured or unmeasurable (especially for ρ and Δ lack of data)
- General difficulties of the transport approach at high density:
 - Off-shell effects
 - Multi-particle collisions
- ⇒ How can we avoid these problems?

Outlook

Coarse Graining

- We take an ensemble of UrQMD events and span a grid of small space time cells for which T and μ_B are calculated
- Equation of state for a **free hadron gas** without any phase transition is used [D. Zschiesche et al., Phys. Lett. B547, 7 (2002)]
- The ρ dilepton emission of each cell is calculated using the thermal equilibrium rate [R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

$$\frac{\mathsf{d}^8\mathsf{N}_{\rho\to\mathsf{II}}}{\mathsf{d}^4\mathsf{x}\mathsf{d}^4\mathsf{q}} = -\frac{\alpha^2\mathsf{m}_\rho^4}{\pi^3\mathsf{g}_\rho^2}\frac{\mathsf{L}(\mathsf{M}^2)}{\mathsf{M}^2}\mathsf{f}_\mathsf{B}(\mathsf{q}_0;\mathsf{T})\mathsf{Im}\mathsf{D}_\rho(\mathsf{M},\mathsf{q};\mathsf{T},\mu_\mathsf{B})$$

• In-medium self energies of the ρ (for ImD_{ρ}) were calculated using empirical scattering amplitudes from resonance dominance

[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

Densities, Temperature and Chemical Potential

- For a central cell in an Au+Au collision @ 3.5 AGeV we get up to 15 times ϵ_0 and 10 times ρ_0
- Temperature $T \approx 140$ MeV and baryon chemical potential $\mu_B \approx 800$ MeV

Au+Au @ 3.5 AGeV

- The UrQMD ρ contribution as well as the coarse-graining results for the vacuum and in-medium spectral functions are shown
- In-medium ρ "melts" away at the pole mass while it becomes dominant at lower masses

Ar + KCl @ 1.76 AGeV

ullet Comparison to existing HADES data shows that the in-medium ho helps to describe the invariant mass spectra for heavy-ion reactions

First look at NA60

 Chiral EoS is used for the NA60 calculation (including chiral symmetry restoration and phase transition)

 $[\mathsf{J.\ Steinheimer\ et\ al.,\ J.\ Phys.\ G38\ (2011)}]$

- In-medium ρ contribution to dimuon excess
- 4π and QGP contribution have to be added
- ⇒ Currently used Eletsky spectral function can not describe the low-mass tail excess dimuons → Check different EoS and spectral functions in the next step

Outlook

- \bullet Careful adjustment of dilepton production in UrQMD, especially via the ρ channel
- Coarse-graining to be done higher energies, with all contributions, and compared to NA60, CERES, RHIC data

- Investigation of diffent equations of state
- Further dilepton calculations with hybrid model (transport + hydro)
- Waiting for HADES Au+Au data and for the pion beam!

Summary

- New approach to combine realistic transport caluclations with in-medium modified spectral functions for vector mesons
- Non-equilibrium treatment highly non-trivial ⇒ Use
 equilibrium rates for a coarse-grained transport dynamics
- First calculations for Ar+KCl @ 1.76 GeV show that we get a good description of the invariant mass spectrum
- Further work in progress...!